Linear programming via a quadratic penalty function
نویسندگان
چکیده
منابع مشابه
Integrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems
In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...
متن کاملExtensions of the Multiplicative Penalty Function Method for Linear Programming
We shall extend Iri's multiplicative penalty function method for linear programming [41 so that it can handle the problem of unknown optimum value of the objective function, without solving both primal and dual problems simultaneously, and generate convergent dual solutions. By making use of these dual variables, lower bounds of the optimum objective function value are updated efficiently, whic...
متن کاملNonlinear programming without a penalty function
Abstract. In this paper the solution of nonlinear programming problems by a Sequential Quadratic Programming (SQP) trust-region algorithm is considered. The aim of the present work is to promote global convergence without the need to use a penalty function. Instead, a new concept of a “filter” is introduced which allows a step to be accepted if it reduces either the objective function or the co...
متن کاملAn interior point method with a primal-dual quadratic barrier penalty function for nonlinear semidefinite programming
In this paper, we consider an interior point method for nonlinear semidefinite programming. Yamashita, Yabe and Harada presented a primal-dual interior point method in which a nondifferentiable merit function was used. By using shifted barrier KKT conditions, we propose a differentiable primal-dual merit function within the framework of the line search strategy, and prove the global convergence...
متن کاملMinimizing a General Penalty Function on a Single Machine via Developing Approximation Algorithms and FPTASs
This paper addresses the Tardy/Lost penalty minimization on a single machine. According to this penalty criterion, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Besides its application in real world problems, Tardy/Lost measure is a general form for popular objective functions like weighted tardiness, late work and tardiness with reje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods of Operations Research
سال: 1996
ISSN: 1432-2994,1432-5217
DOI: 10.1007/bf01193936